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Present and Future Power System

Future Power System

Present Power System - More use of RES, clean

- Heavily Relying on Fossil coal, nuclear power

EUEB S - Load follows Generation
- Generation follows loa _More ICT & Smart

- Limited ICT use meter use

- More competition

)

SMART GRID
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’Future Grid — Smart(er) Grid

_ o Coordinated, full energy management
Wide area monitoring and full integration of DG with large
and control systems central power generation

I\

4
\
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AT Extensive small, distributed

% generation close to end user
Secure, reliable W _—
and green power supply :

e

Customer driven value
added services

Harmonized legal framework
allowing cross border power
trading
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Operational Efficiency

Reduced Onsite Premise Presence /
Field Work Required

Shorter Outage Durations

Optimized Transformer Operation
Standards & Construction

Improved Network Operations
Reduce Integration & IT maintenance
cost

Condition-based Asset Maintenance /
Inspections

Customer
Satisfaction

Enable Customer Self-Service / Reduce
Call Center Inquiries

Improved Revenue Collection

Smart Grid Advantages

Energy Efficiency

Reduced Energy Losses

Active/Passive Demand-side
Management

Environmental
Impact

Reduced Greenhouse Gas Emissions

Delayed Generation & Transmission
Capital Investments
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‘Challenges in Smart Grid Implementation

* Increase Iin system Operational Complexity

« More business oriented attitude

« Large Data Handling

* Information Security

« Cost-effecting implementation (including ICT)
* Requirement of Accurate Forecasting approaches
 Utilization of Demand Response

* Redesigning of electricity market structure

« Fast analysis tools

* Integration of renewable energy sources
 Power Quality and Many more...
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Role of Forecasting in Electric Power System

Electricity Market Operation

GENCO’s/Suppliers

Forecasting
- Load
- Price
- RES Power

!

Bidding
strategies/
Risk
Management

Bid
L bs

Schedules

Energy,

Ancillary Services, and
Transmission

Bid

ISO’s

Sy

Schedules

4 )
rmm
Real
Time
- ),

Markets

Market
Forecast

* Load
* Price

Market Operation

SCuUC

A S Auction
Cong. Mgmt.
Trans. Pricing
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=~ /Necessity in Market Operation

1. Load Forecasting
2. Price Forecasting
3. Operating Reserve Margin Forecasting

4. Wind/Solar Forecasting

Planning and Operational problems due to uncertainity in Renewable

energy
Planning Problems:
Due to uncertainty, unlike conventional generators, RES(wind, solar)

power generation cannot be included into ELD and UC problems.

Operational:
Frequency control, Voltage control, Power Quality, Ancillary

services provision.

RES power producer point of view:
Bidding in day ahead, adjustment and settling Electricity Markets to

__maximize profits/minimize their imbalancecosts,
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= Basic Definition of Forecasting

Forecasting is a problem of determining the future values of a
time series from current and past values.

Past
measurements

[Forecasted values ]

J * one step ahead

° ° * two step ahead
Multiple step ahead

kt—N—l kt—N

Time sampling can be
in sec, min, hours,
days, months and years

Short term forecast
Medium term forecast
Long term forecast
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= Factors Influencing the Forecast variable

4 )

Time Factor
Hour in a day
Day of the Week
Holiday

Type of Customer

[ Load Demand - Domestic loads

Commercial loads
Industrial loads

- J
4 )

Weather Parameters
Temperature
Humidity
Sky cover
Sun shine

\ * Wind Speed /
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Load Demand

Network

Electricity -
Market Clearing Price se;/:

Fuel Prices ]

Available
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=) Factors Influencing Wind Power Generation

Wind Speed

[Wind Power
Wind Turbine

o]

[ Terrain ]
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Wind Speed vs. Wind Power scatter plot
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= Forecasting Approaches

Linear Regression Models : (AR, ARMA, ARIMA, GARCH, etc.)
The forecast value is linearly dependent on the past historical
values of the time series
* Time Series Modeling — Maximum Likelyhood Estimation,
Least Square Estimation Methods are used for Parameter
Estimation.

* State Space Modeling- Kalman Filtering Techniques used

Limitations of Linear Regression Models

1. As they are linear models, they cannot capture the non-linear
relation between the independent and dependent variable.

2. The forecasting error increases rapidly with the increase in
look-ahead time.

3. The model parameters have to be updated very frequently.
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Forecasting Approaches .....contd

Non-Linear Regression models:
Xe = F(Xe—1, Xe—2, Xe—3, o Ug, Up—q, Up 2,7 ) + &

Artificial Neural Networks (ANN) are well established in function
approximation, many variants of NNs are employed in the field
of forecasting problem. Like FFI\ﬂ\I, RNN, RBF, WNN.

Xy ——>

x, —3 Network

x3 —> Parameters ‘ > Y
xn ; \ y

/ +
Back-Propagation Algorithm, Evolutionary based Optimization
methods like GA, PSO are also applied for network training.

Input variables are selected using ACF and PACF.
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“* Other Methods..

" Fuzzy Logic

= Adaptive Neuro-Fuzzy Inference System (ANFIS)

= Data Mining techniques like clustering and Support
Vector Machines (SVM) based classification and
Regression models.

= Wavelet pre-filtering based ANN and Fuzzy models.
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iInd Power Forecast

Wind

feed
N

highly stochastic
random

\_nhon-stationary. ~/
(n)

P x 3

rated speed

Wind Power
output

Cut-in speed

Wind speed

Manufacturer curve
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) Wind Power Forecasting: Approaches
1) Physical Models

NWP forecasts Wind Speed at

Physical |yyh height WP Forecast
Model

Manufacturer curve

« The idea Is to transform the wind speed forecasts, of NWP

model, on a coarse numerical grid to the onsite conditions at the
location of the wind form.

« Detailed physical description of lower atmosphere by
considering factors like :surface roughness and its changes,
scaling of the local wind speed within wind forms, wind form
layouts and turbine power curves.

* The first physical wind power prediction model, Prediktor,
developed at National Laboratory, Risg, Denmark, is based on

the local refinement of wind speed prediction of the NWP system
HIRLAM.
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Examples of Physical Model 1

Prediktor National Laboratory, Risg, Spain, Denmark, 1993

Denmark. Ireland,
Germany, (US)

Previento University of Oldenburg, US & European -
Germany. (Later with) countries. 2004
Energy & Meteo system

LocalPred CENER La Muela, Soria, Alaiz 2001

HIRPOM University College Cork, Denmark 2001

(HIRlam POwer ~ lreland & |
prediction Model) Danish Meteorological

Institute

 They are complex mathematical models.
« More time for execution
« They are site-dependent and not Plug and Play models

[1] G. Giebel, L. Landberg, G. Kariniotakis, and R. Brownsword, “State-of-the-art on methods and software tools for short-term
prediction of wind energy production,” in Proc. Eur. Wind Energy Conf. and Exhibition (EWEC), Madrid, Spain, 2003.
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Ind Power Forecasting: Approaches Contd
o ) with NWP inputs
2) Statistical { i) without NWP inputs

Models
NWP —_—>
forecasts Statistical
. atistica
{ Wind speed — Model e >
Win d power 3 Forecast

Available historical

measurements. ARX, armax, NN, Fuzzy, ANIF

Linear Models Non-Linear Models

« Statistical systems require no mathematical modeling
* Have very high accuracy in very short term
forecasting

* They are not site dependent
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=’ Two stage approach for Wind Power Forecast

Without NWP
Inputs

Historical Wind speed

Statistical forecasts
m.easurements of 3 .
wind speed. Model

Wind speed Statistical >
measurements ’

Model WP Forecast

Wind power
measurements

——

« Statistical models with NWP inputs are capable of forecasting

up to 72 h and models taking purely measured values of wind
speed and power can forecast up to 24 h.
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Examples of Statistical Models [1]

WPPT

(Time Series)

AWPPS
(Fuzzy-ANN)

AWPT
(ANN based)

SIPREOLICO

(Time Serie &
ANN Models)

IMM (Informatics and
Mathematical Modelling),
University of
Copenhagen

Armines/Ecole des
Mines de Paris
ISET

(Institut fir Solare
Energieversorgungstechnik)

University Carlos I,
Madrid

Red Eléctrica de
Espana

Denmark (E & W) 1994

Ireland, Crete, 2002
Madeira

Germany

Spain 2002
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"=/ Two-stage approach for Wind Power Forecast

« The model uses only historical measurements of wind speed
(locally and/or near by sites) and wind power output values.

Stqge - |
f \
AWNN
Stage - |1

Historical :
measurements _ { \
of wind speed. Wind speed

M forecasts

—> R —>] AWNN =S N
A
Wind speed =—3> FFNN >

WP

Forecast
AWNN Wind N
power
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Benchmark Models

Forecasting up to 30 h ahead is carried and compared with benchmark
models (persistence and new-reference models).

Persistence Model:

Also called as naive predictor, the most common benchmark model, which
states that future wind production remains the same as the last measured

value of the power;
P(t + k|t) = P(t).
Drawback: forecast error increases rapidly with the increase in look-
ahead time

New Reference Model: P(t + k|t) = a, P(t) + (1 — a,)P(t)

The constant a; is defined as the correlation coefficient between
P(t) and P(t + k).
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=) Measure of Errors

If error is given as; e(t +k|t) = P(t + k) — P(t + k|t).
, N
Then,  BIAS(k) = &, = NZ e(t + k|t)
t=1

N
MAE (k) = %Z le(t + k|©) |
t=1

1/2

. i
1
RMSE (k) = ﬁZez(t+k|t)
t=1
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~ Schematic Block Diagram for Wind Speed Forecasting

Stage -1

- x(r d. (f
wind speed (7) (1)
Time Series

wind speed
Forecast

g
sallialiin

Multiresolution AWNN based
Analysis Wind Speed
(MRA) Forecast
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VIRA

of Wind Time Series using LA-8 Wavelet
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Auto-Correlation Analysis of Decomposed Wind Speed
Time Series for Network Input selection
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fi&m%%
Network Archite

ctures and Input Lag Hours used

Decomposed Input Lag-hours Network Architecture
Signal
AWNN FFNN
S7 1-14,157-159,285-287 20-2-1 20-3-1
D7 1-12,76-83,167-169 19-2-1 19-3-1
D6 1-10,41-44,84-86 17-2-1 17-3-1
D5 1-6,21-23,44-47 13-2-1 13-3-1
D4 1-3,11-13,23-25,48,72 11-2-1 11-3-1
D3 1,2,5,6,12,60,72 7-2-1 7-3-1
D2 3,6,9,15 4-2-1 4-3-1
D1 1,2,5,22 4-2-1 4-3-1




Department of Electrical Engineering, 11T Kanpur (INDIA)

' 30-hours ahead Wind Speed Forecast

wind speed (m/s)

r

r

actual

forecast by AWNN
forecast by FFNN ||

i\

AN \ ")
fffffffff Al \, v ‘\V/
Y v

time (hours)
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Com parative Performance
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Percentage Improvement
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=/Wind speed to Wind Power Transformation

Stage -11
I"l ll‘ ,’l“\“ r,’l
Wind A\ 4\ Forecasted
speed "l wind speed
>
| FFNN
v
Wind :
ower wind power
P Forecast
FFNN Inputs:

wind speed {0, 1, 2} lag hours and from
wind power series {1, 2, 3, 4, 5, 6} lag hours.
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30-hours ahead Wind Power Forecast
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=) Comparative Performance
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ercentage Improvement
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Error Distributions and Forecasting Ability
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Hourly forecast of wind power, up to 30h ahead, is
carried out in two stages.

In stage-I, multiresolution analysis of wind speed Is
carried and the decomposed signals are forecasted
using AWNN.

In stage-Il, a Feed Forward Neural Network is used for
non-linear mapping between the obtained wind speed
forecasts and wind power outputs.

The forecasting results when compared, shows that
the proposed method has an average improvement of
67% over Persistence and 60% over New-Reference
benchmark model.







